授業のねらい ラーニンの類型 東京の専門家として必要な基礎的な科学力として、ヒトを含む哺乳動物の解剖学的・組織学的・細胞生物学的構成を理解するために、コーラットを解剖し、各器官の形態、位置、隣接器官を詳細に観察、哺乳動物の体の成り立ちを学ぶ。 2. 哺乳動物の組織標本を顕微鏡観察・スケッチし、器官・組織の微細構築を理解する。 3. 組織や細胞、細胞内小器官のはたらきの一端を理解するために、ラット腎臓の組織切片を、酵素化学的手法を用いて染色する。染色した標本を顕微鏡で観察し、その酵素の局在や役割について学ぶ。	1文末行日(アンパ	, , , ,	1成日ヒバンルボー		3220)	担当权具	藤井	佑樹・福森 良	・松下 博昭
授業のねらい ラーニンの類型 東京の専門家として必要な基礎的な科学力として、ヒトを含む哺乳動物の解剖学的・組織学的・細胞生物学的構成を理解するために、	展開方法		実習	単位数	1 単位	開講年次・時期	2年・前期	別必修・選択	必修
 物学的構成を理解するために、 1. ラットを解剖し、各器官の形態、位置、隣接器官を詳細に観察、哺乳動物の体の成り立ちを学ぶ。 2. 哺乳動物の組織標本を顕微鏡観察・スケッチし、器官・組織の微細構築を理解する。 3. 組織や細胞、細胞内小器官のはたらきの一端を理解するために、ラット腎臓の組織切片を、酵素化学的手法を用いて染色する。染色した標本を顕微鏡で観察し、その酵素の局在や役割について学ぶ。 ホスピタリティを構成する能力 学生の授業における到達目標 評価手段・方法 専門力 (1) 哺乳動物の体の構造について説明できるようになる。(2) 細胞・組織の構造とはたらきについて説明できるようになる。(2) 細胞・組織の構造とはたらきについて説明できるようになる。から、とボート・プレゼンテーションをすることができるようになる。 実験によって得られたデータを解析し、客観的かつ論理的に考察がより、カールボート・プレゼンテーションをすることができるようになる。 コミュニケーシ 実験結果・考察並びに調査した課題について的確にプレゼンテーションをすることができるようになる。 接触・課題解決カーグループ内で協調し、積極的に実験に参加することができるよう接業態度・プレゼンテーション 10% 多様性理解力 出席 受験要件 	授業のねらい							アクティブ ラーニング の 類 型	
を構成する能力 字生の授業における到産目標 方法 比率 専門力 (1) 哺乳動物の体の構造について説明できるようになる。 (2) 細胞・組織の構造とはたらきについて説明できるようになる。 レポート・プレゼンテーション 40% 情報収集、	物学的構成を理解するために、 1. ラットを解剖し、各器官の形態、位置、隣接器官を詳細に観察、哺乳動物の体の成り立ちを学ぶ。 2. 哺乳動物の組織標本を顕微鏡観察・スケッチし、器官・組織の微細構築を理解する。 3. 組織や細胞、細胞内小器官のはたらきの一端を理解するために、ラット腎臓の組織切片を、酵素								12671
専門力 (2) 細胞・組織の構造とはたらきについて説明できるようにな る。 レポート・プレ ゼンテーション 40% 情報収集、	•		学 生	の授業し	におけ	る到達目標			
分析力 することができるようになる。 ゼンテーション 25% コミュニケーションカ 実験結果・考察並びに調査した課題について的確にプレゼンテーション プレゼンテーション 25% 協働・課題解決力 グループ内で協調し、積極的に実験に参加することができるようになる。 授業態度・プレゼンテーション 10% 多様性理解力 出席 受験要件	専門力	(2) 細胞・組織の構造とはたらきについて説明できるようにな					トラにな		40%
ヨンカ ションをすることができるようになる。 ヨン 25% 協働・課題解決力 グループ内で協調し、積極的に実験に参加することができるようになる。 授業態度・プレゼンテーション 10% 多様性理解力 出席 受験要件						し、客観的かつ論理的	* * * * * * * * * * * * * * * * * * * *		25%
力 になる。 ゼンテーション 10% 多様性理解力 出席 受験要件	•			., .					25%
出席受験要件									10%
	多様性理解力								
	出 席 受験							要件	
合 計 100%	合 計 10						0%		

担当教員

藤田 英明・藤原 俊幸・

評価基準及び評価手段・方法の補足説明

レポート、プレゼンテーション、授業態度の評価指標(ルーブリック)は別途配布する。

授業の概要

- 1. ラットの解剖
- 2. 哺乳動物の組織標本を光学顕微鏡で観察し、スケッチする。

授業科目 (ナンバリング) 機能形態学実習 (NC220)

3. ラット腎臓の組織切片を、酵素化学的手法を用いて染色し、光学顕微鏡で観察する。

それぞれの実験結果をレポートにまとめて提出する。各実験の結果・考察に加えて、指定した課題についてグループでまとめ、プレゼンテーションを行う。プレゼンテーションの際に、教員からフィードバックを行う。この授業の標準的な1コマあたりの授業外学修時間は、112.5分です。

教 科 書 ・ 参 考 書

教科書:配布する実習書(機能形態学実習の手引き 2016年版)、入門組織学 改訂第2版(南江堂) 指定図書:「カラー版細胞紳士録」藤田恒夫、牛木辰夫 岩波新書

授業外における学修及び学生に期待すること

- (1) 実習書で必ず予習をしておくこと (実習時の説明は最低限にとどめます)
- (2) 実験結果についてグループ内で必ずディスカッションを行うこと
- (3) 何を知るための実験をしているのか、実験目的をよく理解して実験に臨むこと

口	テーマ	授業の内容	予習•復習	到達目標番号*
1	要、実習の目的、科学レポートの	実習全体のプランと目的、実習の心得と遵守・注意事項、科学レポートの内容と書き方、顕微鏡の原理と使い方、基本的なピペット操作方法、天秤の使用方法を修得する。	配布された実習 書で最初の項目 を予習する	
2	実習1:ラット の解剖	1グループ(3~4人)で1匹のラットを解剖する。	実習書で解剖の 手順をよく読ん でおく	407
3	実習1プレゼン テーション 細胞内小器官の 構造・機能	1)「ラットの解剖」のレポートおよび与えられた課題 についての発表2)細胞内小器官の構造と機能に関する説明	実習の復習をする	407
4	実習2:組織標本を観察する	消化器系、呼吸器系、循環器系、泌尿器系、中枢神経 系、筋・骨格系の各組織の標本を観察し、スケッチす る	実習書の実習3の項目を予習する	408
5	実習2プレゼン テーション	1)「組織標本を観察する」のレポートおよび与えられた課題についての発表2)実習全体のまとめ、後片付け	実習3の復習をする	408
6	実習3:細胞内 小器官を見る	各細胞内小器官特異的マーカータンパク質に対する抗体を用い、免疫蛍光染色を行い、蛍光顕微鏡で観察する。	7400 - 740 -	408
7	実習3プレゼン テーション	「細胞内小器官を見る」のレポートおよび与えられた 課題についての発表	実習2の復習をする	408

注)上記の第1回~第7回は、授業の概要を示したもので、実習の順番は変更される場合があります。 *到達目標番号と到達目標の対応は、巻末のコアカリ SBO 番号/項目対応表を参照して下さい。 実習サポート助手:高島 啓吾